Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 43(11): 1891-1904, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37340791

RESUMEN

Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.


Asunto(s)
Hipercapnia , Acoplamiento Neurovascular , Ratones , Animales , Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Bulbo Olfatorio , Acoplamiento Neurovascular/fisiología , Corteza Cerebral/metabolismo
2.
Cereb Cortex ; 33(7): 3996-4012, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36104858

RESUMEN

The human brain is energetically expensive, yet the key factors governing its heterogeneous energy distributions across cortical regions to support its diversity of functions remain unexplored. Here, we built up a 3D digital cortical energy atlas based on the energetic costs of all neuropil activities into a high-resolution stereological map of the human cortex with cellular and synaptic densities derived, respectively, from ex vivo histological staining and in vivo PET imaging. The atlas was validated with PET-measured glucose oxidation at the voxel level. A 3D cortical activity map was calculated to predict the heterogeneous activity rates across all cortical regions, which revealed that resting brain is indeed active with heterogeneous neuronal activity rates averaging around 1.2 Hz, comprising around 70% of the glucose oxidation of the cortex. Additionally, synaptic density dominates spatial patterns of energetics, suggesting that the cortical energetics rely heavily on the distribution of synaptic connections. Recent evidence from functional imaging studies suggests that some cortical areas act as hubs (i.e., interconnecting distinct and functionally active regions). An inverse allometric relationship was observed between hub metabolic rates versus hub volumes. Hubs with smaller volumes have higher synapse density, metabolic rate, and activity rates compared to nonhubs. The open-source BrainEnergyAtlas provides a granular framework for exploring revealing design principles in energy-constrained human cortical circuits across multiple spatial scales.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas , Neurópilo , Descanso , Imagen por Resonancia Magnética/métodos
3.
Nanoscale ; 14(47): 17770-17788, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36437785

RESUMEN

Extremely small paramagnetic iron oxide nanoparticles (FeMNPs) (<5 nm) can enhance positive magnetic resonance imaging (MRI) contrast by shortening the longitudinal relaxation time of water (T1), but these nanoparticles experience rapid renal clearance. Here, magnetic protein nanoparticles (MPNPs) are synthesized from protein-conjugated citric acid coated FeMNPs (c-FeMNPs) without loss of the T1 MRI properties and tagged with fluorescent dye (f-MPNPs) for optical cerebrovascular imaging. The c-FeMNPs shows average size 3.8 ± 0.7 nm with T1 relaxivity (r1) of 1.86 mM-1 s-1 and transverse/longitudinal relaxivity ratio (r2/r1) of 2.53 at 11.7 T. The f-MPNPs show a higher r1 value of 2.18 mM-1 s-1 and r2/r1 ratio of 2.88 at 11.7 T, which generates excellent positive MRI contrast. In vivo cerebral angiography with f-MPNPs enables detailed microvascular contrast enhancement for differentiation of major blood vessels of murine brain, which corresponds well with whole brain three-dimensional time-of-flight MRI angiograms (17 min imaging time with 60 ms repetition time and 40 µm isotropic voxels). The real-time fluorescence angiography enables unambiguous detection of brain capillaries with diameter < 40 µm. Biodistribution examination revealed that f-MPNPs were safely cleared by the organs like the liver, spleen, and kidneys within a day after injection. Blood biochemical assays demonstrated no risk of iron overload in both rats and mice. With hybrid neuroimaging technologies (e.g., MRI-optical) on the rise, f-MPNPs built on this platform can generate exciting neuroscience applications.


Asunto(s)
Hígado , Bazo , Animales , Ratas , Ratones , Angiografía Cerebral , Distribución Tisular , Espectroscopía de Resonancia Magnética
4.
Front Oncol ; 11: 692650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513675

RESUMEN

Glioblastoma progression involves multifaceted changes in vascularity, cellularity, and metabolism. Capturing such complexities of the tumor niche, from the tumor core to the periphery, by magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) methods has translational impact. In human-derived glioblastoma models (U87, U251) we made simultaneous and longitudinal measurements of tumor perfusion (Fp), permeability (Ktrans), and volume fractions of extracellular (ve) and blood (vp) spaces from dynamic contrast enhanced (DCE) MRI, cellularity from apparent diffusion coefficient (ADC) MRI, and extracellular pH (pHe) from an MRSI method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Spatiotemporal patterns of these parameters during tumorigenesis were unique for each tumor. While U87 tumors grew faster, Fp, Ktrans, and vp increased with tumor growth in both tumors but these trends were more pronounced for U251 tumors. Perfused regions between tumor periphery and core with U87 tumors exhibited higher Fp, but Ktrans of U251 tumors remained lowest at the tumor margin, suggesting primitive vascularization. Tumor growth was uncorrelated with ve, ADC, and pHe. U87 tumors showed correlated regions of reduced ve and lower ADC (higher cellularity), suggesting ongoing proliferation. U251 tumors revealed that the tumor core had higher ve and elevated ADC (lower cellularity), suggesting necrosis development. The entire tumor was uniformly acidic (pHe 6.1-6.8) early and throughout progression, but U251 tumors were more acidic, suggesting lower aerobic glycolysis in U87 tumors. Characterizing these cancer hallmarks with DCE-MRI, ADC-MRI, and BIRDS-MRSI will be useful for exploring tumorigenesis as well as timely therapies targeted to specific vascular and metabolic aspects of the tumor microenvironment.

5.
Biomed Opt Express ; 9(11): 5340-5352, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30460132

RESUMEN

Doppler optical coherence tomography (OCT) is widely used for high-resolution mapping of flow velocities and is based on analysis of temporal changes in the phase of an OCT signal (i.e., how fast the OCT signal rotates in the complex plane). Determination of the rate of phase change or rotation speed critically depends on the center of rotation. Here, we demonstrate the bias in high-pass filtering, the current widely used method to determine the center of rotation, and propose two advanced methods for Doppler OCT clutter rejection. The bias in the high-pass filtering method becomes increasingly significant with lower velocities or larger signal noise. Two novel methods based on variance minimization and offset extrapolation can potentially reduce this bias and thereby improve the accuracy of Doppler OCT measurements of flow velocities, even for low-velocity and/or high-noise signals. The two novel methods and the current standard method (high-pass filtering) have been tested in combination with several currently used velocity measurement algorithms: Kasai, autocorrelation function fitting, and maximum likelihood estimation. The newly proposed methods are shown to improve the accuracy in both the center of rotation and resultant velocity by up to 60 percentage points and reduce the flow conservation error by 30% when applied to in vivo cerebral blood flow imaging of the rodent brain cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...